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Abstract—A major benefit of using CNNs for flow stream
predictions lies in its ability to significantly reduce computation
time. This may be especially valuable for real-time analysis or
aerodynamic design, where fast calculations are essential.
In this work, an established convolutiononal neural network
(CNN) from the work of Ribeiro et al. is used as a surrogate
model to predict 2D air flow streams. The main objectives of
the present work are twofold: first, to develop the turbulent
flow prediction capabilities of the CNN, and second, to evaluate
the networks predictions by comparing them to traditional
computational fluid dynamic (CFD) simulations and experimental
particle image velocimetry (PIV) measurements. The evaluation
focuses on two test cases: the NACA0012 airfoil at an angle
of attack (AoA) of 10° and the NACA6412 airfoil at an AoA
of 0°. Both airfoils were inspected when operating at a Reynolds
number (Re) of 82,200.

For the CFD simulation, a grid convergence study was con-
ducted to determine the optimal number of mesh elements.
Additionally, three different Reynolds-Averaged Navier-Stokes
(RANS) turbulence models were analyzed to find the model, that
is most suitable to fit the PIV measurements. For the NACA0012
profile, the results of an existing PIV measurement were utilized,
while for the NACA6412 airfoil, a new measurement was carried
out. In order to predict the flow field around the unseen NACA-
airfoils, the CNN was enabled to model turbulent flows. To
achieve this, a new set of training samples was generated,
incorporating turbulent flows around various types of primitives
to train the network.

The comparison of the PIV measurement results and the CFD
simulation outcomes for both airfoils show qualitative agreement.
However, the experimental data could not be exactly reproduced
in both cases.
The comparison of the traditional CFD simulation and the
predictions of the network shows initial learning effects in
approximating the simulated solution. However, significant dif-
ferences are still present compared to the ground truth. Several
strategies are proposed to enhance the network’s prediction
ability and address the issue of underfitting as a further step.

I. INTRODUCTION

DEEP learning algorithms, in particular convolutional neu-
ronal networks, have the ability to learn and extract

features directly from data inputs without the need of manual

feature engineering [1]. This potential is used in the present
work to demonstrate the utility for the field of fluid dynamics
and aerodynamics.

For many years, computational fluid dynamics has been
extensively used in a variety of applications ranging from
classical industrial and environmental applications to phys-
iological and food processing applications. In those fields,
CFD is providing accurate results with great flexibility and
cost-effectiveness [2]. However, the accuracy of the solution
is strongly influenced by the element size and the number
of the mesh elements used in the simulation. Therefore, one
beknown limitation of CFD is the time required to solve the
highly coupled, non-linear partial differential Navier-Stokes
equations [7]. This may be problematic, particularly when
fast calculations are needed, such as real-time analysis or
during aerodynamic design. Fortunately, the fast-growing field
of deep learning (DL) offers a solution.
Numerous recent studies suggest encouraging results by the
implementation of machine learning algorithms into CFD. A
broad field of applications emerged, ranging from surrogate
models [3]–[7] to hybrid-models [8] and super-resolution [9].
One particular study by Dmitrii Kochkov et al. [10], show that
the integration of deep learning into CFD has the potential to
significantly reduce computation time, with a speedup of 40
- 80 times while maintaining the same level of accuracy as
traditional CFD methods.

As is the case in any field of application, the performance of
deep learning is heavily dependent on the quality and quantity
of the data used to train the model. The field of fluid dynamics
shows a significant advantage concerning the training data of
the networks. Here, training data can be generated artificially
using traditional CFD simulations. While this approach can
be computationally and time-intensive, it has the potential to
yield significant time savings in the long run. It is important
to note that the efficacy of this approach is ultimately limited
by the quality and relevance of the generated data.

The objective of this work is to compare and contrast exper-
imental PIV measurement, traditional CFD simulations, and
the predictions for the pressure scalar and velocity vector field
from a deep learning network using the example of airfoils.
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To compare the obtained data from these three methods, the x-
component of the velocity vector field is the primary measure
that is examined. The attainment of Ribeiro et. al. [3] is
utilized for that reason. Their network (DeepCFD) serves as
the foundation of this work. To compare the experimental PIV
measurement to the prediction of the network is extended to
capture turbulent flows.
The results of this comparison will be used to evaluate the
potential of deep learning in predicting fluid flow and to
assess the differences between experimental measurements,
traditional simulations, and deep learning predictions.
However, it is important to note that the objective of this work
was not to develop a new CNN or modify the existing CNN in
terms of the networks architecture. The only elements modified
to yield adequate results in predicting turbulent flows were the
training data, as well as the input vector that was altered in
consequence. Additionally, some basic hyperparameters such
as the batch size and the learning rate, were also adjusted
accordingly.

II. METHODS

For this work, the NACA0012 and the NACA6412 airfoils
from the 4-digit series of NACA airfoils were selected as
the primary subject of investigation. The NACA0012 airfoil
was particularly chosen based on its well documented char-
acteristics and the availability of experimental data from the
work of Sagar Adatrao et al. [11]. The NACA0012 airfoil
is a symmetrical airfoil with no chamber and a thickness to
cord length ratio of 12%. By contrast, the NACA6412 is an
asymmetrical airfoil with a maximum chamber of 6% at 40%
of the chord length and a maximum thickness to chord ratio
of 12%.
The behavior of both airfoils was tested at a free stream
velocity of 10 m

s . For the NACA0012, the AoA was set to 10°
to meet the setup of the experimental data from Sagar Adatrao
et al.. The AoA for the NACA6412 was set to 10°. In addition,
a PIV measurement was conducted to verify the results of the
simulations from the NACA6412 airfoil. The general approach
to compare the PIV measurements, the results of the CFD
simulation and the prediction of the CNN can be divided into
the following steps:
• PIV measurement and evaluation of the obtained data

(only for NACA6412)
• Setup and solving of the CFD simulation
• Comparison between experimentally obtained velocity

vector field and result from CFD simulation to ensure
validity of the simulation

• Generation of primitives that serves as the input vector
of the training data for CNN

• CFD simulation of primitives to obtain the output vector
of the training data for CNN (pressure scalar field and
velocity vector field)

• Training of CNN
• CNN prediction of velocity vector and pressure scalar

fields of unseen airfoils (NACA0012 & NACA6412)
• Comparison of CNN prediction with experimental data

and CFD simulation results

• Evaluation of flow predictions by CNN and comparison
of accuracy with respect to traditional CFD method

A. Particle Image Velocimetry (PIV) Measurement

A PIV measurement was conducted to verify the results
of the simulations from the NACA6412 airfoil. Therefore,
the NACA6412 airfoil was printed on a Dremel 3D20 3D-
printer with a chord width of 100mm and an AoA of 0°.
The wing was printed with a layer height of 0.2mm. The
measurement was performed at the in-house wind tunnel of
the Management Center Innsbruck. The open-jet open-return
wind tunnel has a circular exit cross section with a diameter
of 80mm. To match the simulation, the free stream velocity
was set to 10 m

s . The droplets, consisting of di(2-ethylhexyl)
sebacate, were generated by the PivTec GmbH, PIVpart30
seeding generator with a modal diameter of approximately
1.2 µm. The Q-switched double pulsed Nd:YAG laser was
placed directly in the middle of the chord, parallel to the
stream direction. The droplets were illuminated at a frequency
of 4Hz and a wave length of 532(2) nm. The puls distance
was set to 25 µs with a pulse energy of 220mJ. The images
were recorded with two 2x PCO PCO.2000 (CCD, 14 bit pixel
depth, 2048 × 2048 max. pixel resolution) cameras equipped
with two Canon EF 50mm f/1.4 USM objectives. The optical
aperture was set to f# = 4. The data set was acquired with
200 double framed images.

The results of the PIV measurement for the NACA0012
airfoil were obtained from Adatrao et al. [11]. For both
measurement results, the mean average was determined for
the extracted vectors and the x-component of the velocity field
was used for the comparison with the simulation results.

B. CFD Simulation

The geometric information of the two-dimensional, sym-
metric NACA0012 airfoil was obtained in the form of a
text file and subsequently imported into the Ansys Fluent
computational fluid dynamic software. Here, version 2022
R2 is used. Next, a C-mesh type domain was generated
surrounding the airfoil profile and serving as the computational
domain. The straight horizontal boundaries of the domain were
positioned 20 cord lengths (c) away from the cord line of the
airfoil while the straight vertical boundary was located 20c
downstream the trailing edge of the airfoil. The semicircular
boundary was placed 20c upstream of the trailing edge of the
airfoil to complete the domain.

A mesh refinement was performed near the wall and at the
wake of the airfoil with gradually increasing elements towards
the outlining domain edges. For the mesh, quadrilateral ele-
ments were used at the whole domain.
The mesh resolution is highly influencing the time needed
to compute a simulation. To reach an optimum between the
accuracy of the solution and the computational time, a grid
convergence test was conducted. The effect of the number of
cells in the domain was measured by the lift coefficient (CL)
of the airfoil. Based on the outcome of the grid convergence
test, a number around 45800 cells was determined as adequate.
Table I shows the results of the grid convergence test.
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TABLE I: Results of the grid convergence test for a C-mesh shaped flow
domain around the NACA0012 airfoil. The CL was observed as a measure
for the convergence test.

Number of Cells Lift Coefficient (CL)

24010 1.004
30400 1.013
45800 1.012
54960 1.012
64120 1.012

The semicircular boundary was assigned as an inlet with
a free stream velocity u∞ of 10 m

s at an angle of 10°. The
upper and lower boundaries were declared as symmetric wall
conditions. The vertical boundary downstream of the chord
was defined as a pressure outlet. The boundary condition of
the airfoil itself was assigned as a wall property with a no-slip
condition.
Furthermore, the solver for the simulation was set up as 2D,
double precision, pressure based, steady solver. The incom-
pressibility of the medium at low Mach numbers does not
require to solve the energy equations.

The simulation for the NACA6412 airfoil was conducted in
a similar manner but for an AoA of 0°.

Due to the major impact of the turbulence model on the
solution and the substantial differences between the models,
three commonly utilized models were conducted in separate
simulations. The realizable/standard (k-ε) [12] and k-ω (SST)
[13] are two equation models, whereas the Spalart-Allmaras
model [14] is a newer one equation model.
The best results were obtained when using the standard k-ε tur-
bulence model with enhanced wall treatment and the Spalart-
Allmaras turbulence model. Therefore, these are used respec-
tively for the simulation of the NACA0012 & NACA6412
profiles and the simulation of the primitives described in II-C.

C. Data Generation

The code to generate the training data for the CNN was
written purely in Python and automated for the most part with
very little human supervision. The whole process below was
written as an asynchronous multiprocess to optimally utilize
the performance of the used computer.
Both, the input and output vectors for the CNN are derived
by the plain, binary images of the geometry. Here, 8 different
primitive shapes were created. The generated primitives con-
sist of circles, rectangles, isosceles triangles, scalene triangles,
ellipses, rounded rectangles, pie-slices and chord-slices.
The primitives were created with various heights, widths and
AoAs achieved via rotation of the geometries. Three different
amounts of training data were generated (763, 2585, 6283) to
detect the influence of the number of training points.
With an input/output vector size of 172 × 79, the original
dimensions from Ribeiro et al. were preserved. For the purpose
of this work, one channel of the input vector was withdraw.
Hence, there are only two remaining input channels for the
input vector. First is the signed distance field (SDF) of the
geometry and second, is the flow region channel (FRC). The
SDF is a geometrical representation, based on the distance
to the boundary of the object where every pixel contains the
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Fig. 1: Flowchart of the data generation process. The rounded rectangles in
gray show the steps that were passed to generate the input (Signed Distance
Field, Flow Region Channel) and output vectors (velocities in x- and y-
direction and pressure). The arrows and the associated text illustrates the
methods or packages that were utilized to obtain an outcome. Arrows with no
accompanying text should indicate the usage of information from the previous
element. The final input and output vectors are represented in the blue and
orange circles.

distance to the closest edge. The snowy package was used
to create the SDFs. For the FRC, four labels were assigned
(0 = obstacle, 1 = fluid, 2 = inlet, 3 = outlet) for each pixel.
Here, the bottom and left side of the domain were assigned
as inlet and the top and right side of the domain as outlet.
The output vector, which comprises 3 channels (Ux, Uy, p),
matches the size of the original vector. To create the output
vector a CFD was performed where the mesh was generated
using pygmsh and solved via simpleFOAM from the PyFoam
package. The inlet velocity was set to 10 m

s in x-direction and
a simulation time of 1000 s was defined collectively for all
simulations.
To interpolate the solution of the highly dense mesh onto the
regular grid of 172 × 79, the scipy package was utilized. Here,
the cell data of the mesh was extracted in a post-processing
step and then interpolated via cubic interpolation.
As a final step, a visual inspection of all results was performed
due to the delicate process. Erroneous samples were discarded
before entering the data set to the DeepCFD network for
training.
The process of data generation for a single sample is illustrated
in fig. 1.

D. CNN Training & Predictions

For training of the CNN, the generated samples of 763, 2585
and 6283 datapoints were fed into the DeepCFD network from
Ribeiro et al. [3] consecutively. The training was performed

https://pypi.org/project/snowy/
https://pypi.org/project/pygmsh/
https://pypi.org/project/PyFoam/
https://pypi.org/project/scipy/
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Fig. 2: Results of the flow simulation around the NACA0012 airfoil. The
image shows the x-component of the velocity field normalized by the free
stream velocity. The coordinates are normalized by the cord length (c) as
illustrated by the grid. The black lines represent the vectors along where the
line plots were extracted.

on a NVIDIA GeForce RTX 3090. For the training, the batch
size was adjusted to a size of 8. The network was trained for
1000 epochs with each of the three data sets.
The data set was split into training and validation data by a
ratio of 70% to 30%. It is noteworthy that, the investigated
NACA-airfoils are neither part of the training nor of the
validation set and therefore completely unseen by the network
when a prediction is demanded.
To forecast a result, the best model is saved after the training
of 1000 epochs. Then, the single input vector of the unseen
NACA-airfoil is fed into this model, generating a prediction
by forward propagation.

E. Comparison & Evaluation

1) PIV Measurement & CFD Simulation: The results of the
PIV measurement from Adatrao et al. [11] on the NACA0012
airfoil were examined using the open source visualization soft-
ware ParaView. Also the simulation results of the NACA6412
airfoil were introduced into ParaView for comparison with the
PIV measurement results.
The x-component of the velocity field from the 2D time-
averaged flow field was selected for the comparison. A
normalization of the velocity field was performed using the
free stream velocity u∞ = 10 m

s . The RANS model of the
CFD simulation allows to compare the time averaged PIV
measurement and the simulation. Here, four positions were
selected to extract a line plot along a section. Each section is
a vertical line of 0.1 (NACA6412) or 0.2 (NACA0012) chord
lengths.

2) CFD Simulation & CNN Prediction: As described in
section II-C the output vector of the DeepCFD model is a 3
channel vector (Ux, Uy, p) with a size of 172 × 79 for each
channel. All three channels were used for the comparison.
The output from the CFD simulation was (similar to the
generation of the output vector in section II-C) interpolated to
obtain the regular grid of size 172 × 79. Apparently, all three
simulation results (the two velocity fields and the pressure
field) were utilized for comparison as well.
Here, each element (pixel) of the 172 × 79 grid from the
interpolated CFD simulation is compared to the associated

(a) Position x/c = 0.0

(b) Position x/c = 0.1

(c) Position x/c = 0.2

(d) Position x/c = 0.3

Fig. 3: The graphs show the flow velocity normalized by the free stream
velocity around the NACA0012 airfoil along a vertical vector from the PIV
measurement result (red) and the CFD simulation result (blue). Each graph
shows the plot from one of four positions of the vectors. A visualization of
the vector locations can be found in fig. 2.

element (pixel) of the predicted output vector from the CNN.
The mean absolute error (MAE) is calculated from those two
outputs and used as a measure of accuracy. Furthermore, the
MAE of all pixels is computed to compare the models trained
with a different number of samples.

https://www.paraview.org/
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Fig. 4: Results of the flow simulation around the NACA6412 airfoil. The
image shows the x-component of the velocity field normalized by the free
stream velocity. The coordinates are normalized by the cord length (c) as
illustrated by the grid. The black lines represent the vectors along where the
line plots were extracted.

3) Statistical Evaluation: To verify the results of the CNN
prediction, a statistical test was performed. The hypothesis of
similarity of the results from the CNN prediction and the CFD
simulation (ground truth) was tested. Therefore, the output
arrays, which both have a size of 172 × 79 pixels/elements
were used in a paired difference test. This is possible due to the
prediction of the same result by two different methods (CNN
prediction and simulation). The Shapiro-Wilk test could not
deliver reliable results due to the exceedance of the maximal
sample size by more than factor 2. However, a visual inspec-
tion of the array histograms exhibited the distribution was not
normally distributed. Therefore, the paired difference, non-
parametric, two-tailed Wilcoxon signed-rank test was selected
for the analysis with a level of significance (α) equal to 0.05.
The test was performed using the wilcoxon function from the
scipy package for Python.

III. RESULTS

A. Comparison of CFD Simulation and PIV Results

1) NACA0012: The outcome of the flow simulation around
the NACA0012 airfoil is shown in fig. 2. Here, the x-
component of the velocity normalized by the free stream ve-
locity is illustrated. The grid illustrated in the figure shows the
coordinates normalized by the chord length (c). As described
in section II-E1, the results of the PIV measurement and the
CFD simulation were analyzed using vertical line plots at four
different locations of the airfoil. All four vectors start at a
height of 0 and end at the height of 0.2 y/c. The positions in
x-direction start at 0 and continue to be 0.1 units apart. These
vectors are marked as black lines in fig. 2.

2) NACA6412: The results of the CFD simulation for the
NACA6412 chord is illustrated in fig. 4. As for the NACA0012
airfoil, the x-component of the velocity is normalized by the
free stream velocity.
The vectors used for the comparison of the CFD simula-
tion results and the experimental PIV measurements for the
NACA6412 differ from the vectors used for the NACA0012
due to the different shape of the airfoil and the different AoA.
Here, all vectors have a length of 0.1 units. The first vector is
formed from the origin, whereas all other vectors originate at

(a) Position x/c = 0.0

(b) Position x/c = 0.1

(c) Position x/c = 0.2

(d) Position x/c = 0.3

Fig. 5: The graphs show the flow velocity normalized by the free stream
velocity around the NACA6412 airfoil along a vertical vector from the PIV
measurement result (red) and the CFD simulation result (blue). Each graph
shows the plot from one of four positions of the vectors. A visualization of
the vector locations can be found in fig. 4.

a height of 0.1 units in y-direction. In fig. 4 the vectors are
represented as black lines.
The results of the analysis is shown in fig. 3. Here, the normal-
ized x-component of the flow velocity from the experiment (in
red) and the simulation (in blue) is imaged for every vector.

https://pypi.org/project/scipy/
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Fig. 6: Comparison for the NACA0012 airfoil. The figure shows the com-
parison of the CFD simulation results (top) and the predicted outcome of the
CNN (middle) for the flow velocity fields in x-direction (Ux). The bottom
image shows the absolute error between the CFD simulation and the CNN
prediction. The CNN predictions were attained by a model, trained with 6283
samples.

B. Comparison of CNN Prediction and CFD Simulation Re-
sults

The comparison between the CFD results and the CNN
predictions is based upon the x-component of the velocity field
of the simulation and the CNN. The interpolated result of the
CFD simulation serves as the ground truth. As a comparison,
the absolute error is calculated between the CFD simulation
and the outcome of the CNN for every pixel. The results of this
operation can be found in fig. 6 for the NACA0012 airfoil and
in fig. 7 representing the NACA6412 airfoil. The predictions
of these results were made by the network (DeepCFD) trained
with the highest number of training samples. Both figures
show the ground truth generated by the CFD simulation in
the first column. The middle column represents the prediction
made by the CNN with 6283 training samples. The last
column illustrates the absolute error calculated by the first
two columns.

Furthermore, the MAE is calculated for the whole image
instead of a pixelwise operation. Here, the CNN prediction
is subtracted from the ground truth (CFD simulation) and the
absolute value is calculated for each pixel. Then, the average
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Fig. 7: Comparison for the NACA6412 airfoil. The figure shows the com-
parison of the CFD simulation results (top) and the predicted outcome of the
CNN (middle) for the flow velocity fields in x-direction (Ux). The bottom
image shows the absolute error between the CFD simulation and the CNN
prediction. The CNN predictions were attained by a model, trained with 6283
samples.

TABLE II: Mean absolute errors of the CFD simulation results and CNN
outputs predicted by models trained with different numbers of samples for
the NACA0012

Number of Samples MAE Ux (m
s

) MAE Uy (m
s

) MAE p (Pa)

763 2.4704 1.0406 137.9077

2585 3.5930 0.9100 152.6207

6283 8.4229 1.0280 147.3720

mean is computed from all pixels. The results can be abstracted
from tbl. II for the NACA0012 and tbl. III for the NACA6412
airfoil. Here, all three channels (Ux, Uy, p) were used for
comparison.

TABLE III: Mean absolute errors of the CFD simulation results and CNN
outputs predicted by models trained with different numbers of samples for
the NACA6412

Number of Samples MAE Ux (m
s

) MAE Uy (m
s

) MAE p (Pa)

763 1.5319 0.477 63 79.0899

2585 1.9821 0.4145 99.5374

6283 2.1660 0.5980 94.8296
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TABLE IV: Results of the Wilcoxon signed-rank test for the CFD simulation
results and CNN outputs predicted by models trained with different numbers
of samples for the NACA0012

Number of p-value p-value p-value

Samples Ux Uy p

763 0.2120 1.3437× 10−264 0.0113

2585 5.1205× 10−264 4.3481× 10−226 0.9393

6283 4.0661× 10−218 0.8749 2.4025× 10−242

TABLE V: Results of the Wilcoxon signed-rank test for the CFD simulation
results and CNN outputs predicted by models trained with different numbers
of samples for the NACA6412

Number of p-value p-value p-value

Samples Ux Uy p

763 0.0494 4.3639× 10−76 8.5789× 10−22

2585 0.0000 5.8279× 10−63 2.9465× 10−90

6283 0.002 89 1.3161× 10−47 3.7176× 10−259

C. Statistical Results

The results of the Wilcoxon signed-rank test for the
NACA0012 and NACA6412 can be found in tbl. IV and V
respectively. Here, the p-values for the two velocity vector
fields and the pressure scalar field are shown, based on the
three different number of samples the model was trained with.

IV. DISCUSSION & FUTURE WORK

The first two graphs from fig. 3 at the positions 0.0 and
0.1 x/c present satisfactory consensus apart from a minor
offset in the far field. At the positions 0.2 and 0.3 x/c it can
be observed, that the offset in the far field becomes bigger.
Furthermore, the alignment of the results seems to be displaced
from the second position (0.1 x/c) on. Due to the late onset
of the stream separation in the simulation, there is almost a
complete absence of back flow for the examined positions.
Apart from these differences, the results from the simulation
correspond with the PIV measurement results for the most
part. Thus, the simulation is assessed to be sufficient keeping
in mind, that the objective of the simulation was not to utterly
mimic the PIV measurement results but to serve as a reference
for all further simulations of the primitives.

The simulation results from the NACA6412 airfoil illus-
trated in fig. 4, show a thin and steep gradient around the
airfoil which flattens out at the tip and the trailing edge of
the airfoil. The stream does not detach at any point from
the chord. Thus, no back flow areas are present. The suction
side shows a characteristic increase of up to 1.4 of times the
free stream velocity, whereas the pressure side of the airfoil
remains almost continuous throughout the whole chord width.
The results from the PIV measurement, that was additionally
conducted, show qualitative consensus with the simulation.
The graphs along the vectors at the positions x/c = 0.1, 0.2 and
0.3 all show an offset of the same size. This is can be explained
due to the influence of the wakes originating from the wind
tunnels upper boundary. The graph at position x/c = 0.0 does
not exhibit this issue because the corresponding vector is at a
different height (y/c = 0.0 - 0.1) compared tho the remaining
vectors (y/c = 0.1 - 0.2).

When reviewing the results from comparison of the
NACA0012 simulation and CNN prediction summarized in
tbl. II, it becomes apparent, that the MAE is within the
same order as the maximum magnitude of the velocities
simulated via CFD for both the x- and y-direction. Also, the
MAE of the pressure field is within the same order as the
maximum magnitude of pressure. These modest results, yield
to the opinion of the networks unability to accurately predict
turbulent flow fields from the current setup. Furthermore, when
observing the results of the MAE from the table, the number of
training samples does not exhibit any influence on the outcome
of the CNNs prediction.
The same is true for the comparison of the results between the
CFD simulation and the CNN prediction of the NACA6412,
summarized in tbl. III. Here, the order of the MAE is also
within the same range as the magnitude of the maximum
values from the velocity fields and the pressure field. Addi-
tionally, the number of training samples does neither have a
positive nor a negative effect on the MAE for all three fields.
Although, the results of the MAE do not indicate an im-
provement regarding the different numbers of training samples
overall, local advances in the prediction of certain charac-
teristics such as the slower flow in the turbulent wake area,
downstream of the airfoil, the formation of pressure gradients
around the airfoil and the representation of the airfoil itself
can be observed when inspected visually.

To put this into perspective, the original network introduced
in the work of Ribeiro et al. [3] reached a accuracy of less
than 10% error for most values. However, the utilization of
the network in this context was for non-uniform steady laminar
flows. The prediction of turbulent flows may be comparatively
more difficult to predict.
Additionally, the work of Bhatnagar et al. [15] proposes a
MAE level of less than 10% over the entire flow field for
turbulent flows. Here, only three different airfoils (S805, S809,
S814) were used as training samples with different AoA and
Re. This resulted in a total of just 252 samples where 85% used
as the training set and the remaining data sets are utilized for
validation. Furthermore, the network was trained for 30,000
epochs. Three airfoils were considered as unseen geometries
to further explore the abilities of the network. Here, a ”new
airfoil” was created from an averaged shape of the S809 and
S814 airfoils. The other two profiles were the S807 and S819
airfoil. Moreover, it must be noted, that the shape of all three
unseen chords more or less lies within the shapes of the trained
airfoils making the prediction of the unseen airfoils similar to
the prediction of the validation or training chords.
Another point of reference is the work from Thuerey et al.
[16], that yields an accuracy of the mean relative pressure and
velocity error of less than 3% for their best models. Their CNN
was trained for 1200 epochs with RANS simulated samples
of flows around 1505 different airfoils at various AoAs and
Res. This resulted in a total of 26,722 target samples.

Several approaches occur to improve the networks capacity
and to prevent the present underfitting issue:
• The plainest strategy would be to increase the training du-

ration. The network was trained for merely 1000 epochs.
As discussed, the model of Bhatnagar et al. [15] was
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trained for 30,000 epochs.
• Secondly, even though the number of training samples

only showed a minor improvement on the prediction
capabilities, a drastic increase could anyway lead to better
outcomes. For example, Thuerey et al. [16] used a total
of 26,722 samples for training.

• Moreover, the enhancement of the training data quality in
regards to the number and distribution of different shapes
may also lead to success.

• Also, the hyperparameters can be adjusted to optimize
training and the prediction output.

• Finally, the network architecture has a big influence on
the results. The number of layers and the filter sizes can
be increased to take countermeasures against underfitting.

Apparently, a combination of the above mentioned strategies
might also be successful.

V. CONCLUSION

The objective of this work was twofoldly. (1) Enlarging the
capabilities of the DeepCFD network to predict turbulent flows
rater than just non-uniform steady state laminar flows as in the
original configuration. (2) The comparison of the predictions
with respect to real applications by verifying the outcome of
the simulations that are used as the ground truth.
The second objective was addressed first, to ensure the validity
of the simulation process for the primitives which then later
serve as the output vector for the network. For that reason, the
data from the PIV measurement of the NACA0012 airfoil was
used as a reference point and compared to the outcome of the
simulation. Although, the simulation results did not entirely
meet the results from the PIV measurement, the simulation
process was still regarded to be adequate.
To address the first objective, the original input and output
vectors of the network were emulated for turbulent streams.
The trained network was then used to predict the velocity
fields and the pressure field around the unseen NACA0012
and NACA6412 airfoil. Unfortunately, the results of those
predictions were inaccurate with an MAE of the same order
as the investigated flows. Furthermore, the Wilcoxon signed-
rank test also disclosed low conformance compared to the
simulation results. Due to this underfitting issue, the original
idea of extending the image resolution and to incorporating
different free stream velocities were discarded.
However, the issue of underfitting may be addressed through
different approaches, in the future. For example by increasing
the training time, the number of samples or the networks layer
depth or filter sizes. These strategies all yielded success for
other works [15], [16].
Even though, alike studies regarding DL predictions of flow
fields exist, most of them do either not cover turbulent flows
or are specialized to certain geometries such as airfoils. With
this work, it should be possible to (1) predict turbulent flow
fields and (2) predict flow fields for a broad variety of obstacle
shapes.
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